亚洲综合无码日韩国产加勒比-欧美激情精品久久久久久-最新亚洲人成网站在线影院-国产精品乱码高清在线观看-国产午夜福利精品久久

你的位置:首頁 > 電源管理 > 正文

簡化備份電源?低成本電解電容器+雙向后備電源更有效

發布時間:2018-04-17 來源:winniewei 責任編輯:lina

【導讀】在嵌入式系統需要可靠供電的電信、工業和汽車應用中,數據丟失是一個關切的問題。供電的突然中斷會在硬盤和閃存器執行讀寫操作時損壞數據。我們常常使用電池、電容器和超級電容器來存儲足夠的能量,以在供電中斷期間為關鍵的負載提供短期電源支持。
 
 
那么,有沒有一種更簡單的方法讓我們來完成這些事兒呢?
 
于是,就有了 LTC3643,它能使我們采用一種相對便宜的儲能元件——低成本電解電容器。本文將介紹的是一款電路,它使 LTC3643 用作針對 3.3V 電壓軌的備份電源解決方案。
 
在這里提及的備份電源或保持電源中,當電源存在時,LTC3643 把存儲電容器充電至 40V,而當電源中斷時,LTC3643 則把該存儲電容器的電能釋放給關鍵的負載。負載 (輸出) 電壓可設置為介于 3V 和 17V 之間的任何電壓。
 

 
LTC3643 可容易地適用于 5V 和 12V 電壓軌的備份解決方案,但是 3.3V 電壓軌解決方案則需要格外謹慎。LTC3643 的最小工作電壓為 3V,比較接近于 3.3V 的標稱輸入電壓電平。如圖 1a 所示,當采用一個隔離二極管以使備份電壓電源與非關鍵的電路分離時,這種余量就太嚴緊了。如果 D1 是一個肖特基二極管,其正向壓降 (作為負載電流和溫度之函數) 會達到 0.4V 至 0.5V,足以把 LTC3643 VIN 引腳上的電壓置于 3V 最小值以下。因此,備份電源電路可能無法啟動。
 

 
一種可行的解決方案是把二極管移動到供電 DC/DC 轉換器的輸入端 (D2),如圖 1b 所示。遺憾的是,在此情形下,連接至上游 DC/DC 電源的非關鍵負載會從備份電源吸取功率,因而留給關鍵負載的電能較少。
 
3.3V 備份電源運作
 
圖2展示出了一款用于產生 3.3V 備份電源的解決方案,其采用一個隔離 MOSFET 為關鍵的負載儲備能量。圖 1 所示的隔離二極管被一個低柵極門限電壓 P 溝道功率 MOSFET (Q1) 所取代。
 

 
在 3.3V 環境中運作備份電源的關鍵是增設 RA-CA 串聯電路。在啟動時,隨著輸入電壓的上升,流過電容器 CA 的電流取決于公式 IC = C·(dV/dt)。該電流在 RA 的兩端產生一個電位,此電位足以強化一個低柵極門限電壓小信號 N 溝道 MOSFET (Q2)。當 Q2 接通時,它把 Q1 的柵極拉至地電位,在輸入電壓和 LTC3643 電源引腳 VIN 之間提供了一條極低電阻的通路。一旦 3.3V 被施加至轉換器,則其隨即啟動,下拉 Q1 的柵極和 PFO 引腳電平,而且它開始給存儲電容器充電。
 
當 3.3V 電壓軌達到穩態時,IC 電流減小至某一點,在該點上 RA 兩端的電壓下降到低于 Q2 柵極門限電平且 Q2 關斷,因而不再影響備份電源轉換器的功能。另外,PFO 引腳將 R3A 接地,從而把 PFI 引腳電源故障電壓電平復位至最小值 3V,以確保轉換器在輸入電壓電源斷接時保持正常運行。
 
電路功能
 
圖 3 中的波形示出了 3.3V 電壓軌啟動時的結果。當輸入電壓上升時,Q2 的柵極電壓也升高,因而把 Q1 的柵極拉至低電平。Q1 處于強化狀態,允許完整的 3.3V 電壓到達 LTC3643,將 Q1 體二極管旁路。最后,Q2 的柵極電壓降至低于門限電平且 Q2 關斷,到這個時候 LTC3643 是全面運行的,并控制著 Q1 的柵極。
 
LTC3643 的多功能性在這里展現出來:特別是它能夠限制用于給存儲電容器充電之升壓型轉換器的充電電流。在必須盡量減小總電流的場合中,例如:當存在長導線或高阻抗電壓電源時,可把升壓電流設定在較低的水平,以最大限度減輕充電電流對輸入電壓降的影響。這一點對于 3.3V 電壓軌是尤其重要。在圖 2 中,0.05Ω 電阻器 RS 為升壓型轉換器充電電流設定了一個 0.5A (10.5A 負載) 的限值 (最大可能設定限值為 2A);其余的電流則輸送至負載。
 
圖 4 示出了失去 3.3V 電壓軌時的波形。當輸入電壓下降時,Q2 的柵極電壓保持不變 (接近于地電位),而且 Q2 處于關斷狀態。與此相反,Q1 的柵極電壓則急劇上升至 3.3V。這把 Q1 關斷,由 Q1 的體二極管起隔離二極管的作用,從而使負載與輸入分離。此時備份電源接管供電,LTC3643 通過釋放存儲電容器的電能以給關鍵的負載提供3.3V。
 
 
 

推薦閱讀:
一鎖開啟智慧生活:ISHE展邀您來看最火熱的智能家居應用
如何從PCB層和電路上開始解決EMC設計問題?
抑制PCB干擾,如何在源頭上把EMI減到最小
深度解析高誘電系陶瓷電容器老化特性
深度分析 - 選對傳感器, 解決IoT困境!
 
 
要采購電容器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉

主站蜘蛛池模板: 国产日韩欧美一区二区东京热| 中文精品久久久久人妻| 国产成人精品无码一区二区| 久久精品高清一区二区三区| 色婷婷av久久久久久久| 欧美性生交xxxxx久久久| 亚洲日韩成人性av网站| 伊人久久大香线蕉avapp下载| 内射口爆少妇麻豆| 熟妇激情内射com| 日日天干夜夜人人添| 色欲综合一区二区三区 | 免费人成视频x8x8入口| 亚洲图女揄拍自拍区| 97人妻免费公开在线视频| 日韩吃奶摸下aa片免费观看| 激情av无码后入| 东北粗壮熟女丰满高潮| 精品性影院一区二区三区内射| 亚洲欧美日韩国产综合点击进入| 无码人妻精品一区二区三区久久久 | 国产毛片久久久久久国产毛片| 99久久人妻无码精品系列| 老司机午夜永久免费影院| 亚洲欧美中文日韩v在线97| 亚洲欧美日韩中文播放| 欧美伊香蕉久久综合网另类| 国产精品天干天干有线观看 | 热99re久久精品这里都是精品| 亚洲欧洲av无码电影在线观看| 窝窝影院午夜看片| 人妻无码中文字幕一区二区三区 | 青青草国产免费久久久| 国产亚洲精品aaaa片小说| 最新精品国偷自产在线| 亚洲人成网站在线播放无码| 蜜臀av色欲a片无码一区| 国产真实露脸精彩对白| 国产亚洲成av人片在线观看下载| 色琪琪av中文字幕一区二区| 精品亚洲国产成人|