-
Silent Switcher技術解決電磁干擾,提高效率
自1844年以來,降低電子電路中的噪音一直是設計師們面臨的一個挑戰。1844年,摩爾斯在華盛頓的國會大廈里,操作電報機發出了世界上第一封電報,內容是:上帝創造了何等的奇跡(來自《圣經》)。從那時起,電路中的繼電器產生的靜電噪音或其他外部干擾,就從來沒有離開過電子科學。
2020-08-21
Silent Switcher 電磁干擾
-
如何調節MAX2009/MAX2010 RF預失真器來優化系統性能?
類似于 WCDMA 的線性調制方案能夠支持較高的數據速率,每個載波允許多個無線連接,但會造成載波信號較高的峰均比。與恒包絡調制不同(恒包絡調制中允許 PA (功率放大器)采用小尺寸),目前應用中的放大器必須采用較大的散熱面積,以滿足鄰信道泄漏的要求。
2020-08-21
MAX2009/MAX2010 RF預失真器
-
如何確定電路板Layout爬電距離、電氣間隙?
一般來說,爬電距離要求的數值比電氣間隙要求的數值要大,布線時須同時滿足這兩者的要求(即要考慮表面的距離,還要考慮空間的距離),開槽(槽寬應大于1mm)只能增加表面距離即爬電距離而不能增加電氣間隙,所以當電氣間隙不夠時,開槽是不能解決這個問題的,開槽時要注意槽的位置、長短是否合適,...
2020-08-19
電路板 Layout 爬電距離 電氣間隙
-
ADC誤差是如何產生的?
本篇文章列出了影響模數轉換精度的主要誤差。這些類型的誤差存在于所有模數轉換器中,轉換質量將取決于它們的消除情況。STM32微控制器數據手冊的ADC特性部分規定了這些誤差 值。規定了STM32 ADC的不同精度誤差類型。為便于參考,將精度誤差表達為1 LSB的倍數。
2020-08-18
ADC誤差 模數轉換
-
差分信號及差分放大電路有什么作用?
差分放大電路在數顯表應用很多,本文以圖文形式簡單介紹差分信號、單端信號的概念及差分放大電路的作用,方便大家對差分放大電路相關知識有所了解。
2020-08-14
差分信號 差分放大電路
-
CCM與DCM模式到底有什么區別?
有人問CCM和DCM之間到底有何區別?要如何區分這兩種模式?之前在網絡上有看到一份關于CCM和DCM這兩者之間的判別及分析的材料,個人感覺講的還是比較到位的,所以分享出來,希望對大家有所幫助。
2020-08-14
CCM模式 DCM模式
-
電容ESR測量表電路
電容正常運作時是毫無問題的,但有時會遇上電源故障或無法正常運轉的問題。如果這個問題是噪聲,那么有個簡單的解決辦法,只需加入更多的電容即可。但如果這樣也無法解決,究竟是哪出錯了呢?
2020-08-13
電容ESR 測量表電路
-
如何通過可變增益放大器LMH6505實現AGC電路設計?
數字接收機對輸入模擬信號的要求往往要比模擬接收機更嚴格,除了頻率方面有限制外,為了提高A/D 數據采集的精度,還要求輸入信號的幅度既不能過大,也不應過小。因此為了改善數字接收機的動態范圍,較常見的解決方法是在其前級增加信號調理單元。
2020-08-13
可變增益放大器 LMH6505 AGC電路
-
寬帶功率放大器如何實現應用設計及其結構原理分析
寬帶功率放大器的應用開始從軍用向民用擴展,目前在無線通信、移動電話、衛星通信網、 定位系統(GPS)、直播衛星接收(DBS)、ITS通信技術及毫米波自動防撞系統等領域有著廣闊的應用前景,在光傳輸系統中,寬帶功率放大器也同樣占有重要地位。
2020-08-13
寬帶功率放大器 光傳輸系統
- 聚合物電容全景解析:從納米結構到千億市場的國產突圍戰
- 超300cd亮度+毫米級光域!艾邁斯歐司朗SYNIOS P2720重構車燈微光學架構
- 從存儲轉發到AI自治:以太網交換機的四階技術躍遷
- 驅動器技術全景圖:從原理到國產替代的破局之路
- 奇瑞羅姆技術共創日,共繪汽車電子未來藍圖
- 隔離式柵極驅動器核心技術全景:安全、能效與國產破局路徑
- 三新驅動西部崛起:第十三屆西部電子信息博覽會成都盛大啟幕
- EMVCo C8預認證!意法半導體STPay-Topaz-2重塑支付芯片安全邊界
- 村田開始量產村田首款0402英寸47μF多層陶瓷電容器
- 安規電容技術全景圖:從安全設計到國產替代突圍
- 滌綸電容技術全解析:從聚酯薄膜特性到高保真應用設計指南
- 灣芯展2025預登記啟動!10月深圳共襄半導體盛宴
- 車規與基于V2X的車輛協同主動避撞技術展望
- 數字隔離助力新能源汽車安全隔離的新挑戰
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall